Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
mBio ; 14(5): e0220723, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37796005

RESUMO

IMPORTANCE: A robust taxonomy is essential for the organized study of prokaryotes and the effective communication of microbial knowledge. The genus rank is the mainstay of biological classification as it brings together under a common name a group of closely related organisms sharing the same recent ancestry and similar characteristics. Despite the unprecedented resolution afforded by whole-genome sequencing in defining evolutionary relationships, a consensus approach for phylogenomics-based prokaryotic genus delineation remains elusive. Taxonomists use different demarcation criteria, sometimes leading to genus rank over-splitting and the creation of multiple new genera. This work reports a simple, reliable, and standardizable method that seeks to minimize subjectivity in genomics-based demarcation of prokaryotic genera, exemplified through application to the order Mycobacteriales. Formal descriptions of proposed taxonomic changes based on our study are included.


Assuntos
Actinomycetales , Filogenia , Genômica/métodos
2.
mBio ; 14(1): e0322122, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36656016

RESUMO

Rapid phagosomal escape mediated by listeriolysin O (LLO) is a prerequisite for Listeria monocytogenes intracellular replication and pathogenesis. Escape takes place within minutes after internalization from vacuoles that are negative to the early endosomal Rab5 GTPase and positive to the late endosomal Rab7. Using mutant analysis, we found that the listerial invasin InlB was required for optimal intracellular proliferation of L. monocytogenes. Starting from this observation, we determined in HeLa cells that InlB promotes early phagosomal escape and efficient Rab7 acquisition by the Listeria-containing vacuole (LCV). Recruitment of the class III phosphoinositide 3-kinase (PI3K) Vps34 to the LCV and accumulation of its lipid product, phosphatidylinositol 3-phosphate (PI3P), two key endosomal maturation mediators, were also dependent on InlB. Small interfering RNA (siRNA) knockdown experiments showed that Vps34 was required for Rab7 recruitment and early (LLO-mediated) escape and supported InlB-dependent intracellular proliferation. Together, our data indicate that InlB accelerates LCV conversion into an escape-favorable Rab7 late phagosome via subversion of class III PI3K/Vps34 signaling. Our findings uncover a new function for the InlB invasin in Listeria pathogenesis as an intracellular proliferation-promoting virulence factor. IMPORTANCE Avoidance of lysosomal killing by manipulation of the endosomal compartment is a virulence mechanism assumed to be largely restricted to intravacuolar intracellular pathogens. Our findings are important because they show that cytosolic pathogens like L. monocytogenes, which rapidly escape the phagosome after internalization, can also extensively subvert endocytic trafficking as part of their survival strategy. They also clarify that, instead of delaying phagosome maturation (to allow time for LLO-dependent disruption, as currently thought), via InlB L. monocytogenes appears to facilitate the rapid conversion of the phagocytic vacuole into an escape-conducive late phagosome. Our data highlight the multifunctionality of bacterial virulence factors. At the cell surface, the InlB invasin induces receptor-mediated phagocytosis via class I PI3K activation, whereas after internalization it exploits class III PI3K (Vsp34) to promote intracellular survival. Systematically elucidating the mechanisms by which Listeria interferes with PI3K signaling all along the endocytic pathway may lead to novel anti-infective therapies.


Assuntos
Listeria monocytogenes , Listeria , Humanos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proliferação de Células , Células HeLa , Proteínas Hemolisinas/genética , Fosfatidilinositol 3-Quinases/metabolismo , Vacúolos/metabolismo , Classe III de Fosfatidilinositol 3-Quinases
3.
Clin Microbiol Rev ; 36(1): e0006019, 2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-36475874

RESUMO

Listeria monocytogenes is a Gram-positive facultative intracellular pathogen that can cause severe invasive infections upon ingestion with contaminated food. Clinically, listerial disease, or listeriosis, most often presents as bacteremia, meningitis or meningoencephalitis, and pregnancy-associated infections manifesting as miscarriage or neonatal sepsis. Invasive listeriosis is life-threatening and a main cause of foodborne illness leading to hospital admissions in Western countries. Sources of contamination can be identified through international surveillance systems for foodborne bacteria and strains' genetic data sharing. Large-scale whole genome studies have increased our knowledge on the diversity and evolution of L. monocytogenes, while recent pathophysiological investigations have improved our mechanistic understanding of listeriosis. In this article, we present an overview of human listeriosis with particular focus on relevant features of the causative bacterium, epidemiology, risk groups, pathogenesis, clinical manifestations, and treatment and prevention.


Assuntos
Bacteriemia , Listeria monocytogenes , Listeriose , Gravidez , Feminino , Recém-Nascido , Humanos , Listeriose/epidemiologia , Listeriose/microbiologia , Listeriose/prevenção & controle , Listeria monocytogenes/genética , Fatores de Risco , Microbiologia de Alimentos
4.
Emerg Infect Dis ; 28(9): 1899-1903, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35997496

RESUMO

A multidrug-resistant clone of the animal and human pathogen Rhodococcus equi, MDR-RE 2287, has been circulating among equine farms in the United States since the 2000s. We report the detection of MDR-RE 2287 outside the United States. Our finding highlights the risk for MDR-RE spreading internationally with horse movements.


Assuntos
Infecções por Actinomycetales , Doenças dos Cavalos , Rhodococcus equi , Infecções por Actinomycetales/tratamento farmacológico , Infecções por Actinomycetales/epidemiologia , Infecções por Actinomycetales/veterinária , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana , Doenças dos Cavalos/epidemiologia , Cavalos , Humanos , Macrolídeos , Rhodococcus equi/genética , Rifampina , Estados Unidos
5.
J Clin Microbiol ; 59(10): e0114921, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34319806

RESUMO

Clonal multidrug resistance recently emerged in Rhodococcus equi, complicating the therapeutic management of this difficult-to-treat animal- and human-pathogenic actinomycete. The currently spreading multidrug-resistant (MDR) "2287" clone arose in equine farms upon acquisition, and coselection by mass macrolide-rifampin therapy, of the pRErm46 plasmid carrying the erm(46) macrolide-lincosamide-streptogramin resistance determinant, and of an rpoBS531F mutation. Here, we screened a collection of susceptible and macrolide-resistant R. equi strains from equine clinical cases using a panel of 15 antimicrobials against rapidly growing mycobacteria (RGM) and nocardiae and other aerobic actinomycetes (NAA). R. equi isolates-including MDR ones-were generally susceptible to linezolid, minocycline, tigecycline, amikacin, and tobramycin according to Staphylococcus aureus interpretive criteria, plus imipenem, cefoxitin, and ceftriaxone based on Clinical and Laboratory Standards Institute (CLSI) guidelines for RGM/NAA. Susceptibility to ciprofloxacin and moxifloxacin was borderline according to European Committee on Antimicrobial Susceptibility Testing (EUCAST) criteria. Molecular analyses linked pRErm46 to significantly increased MICs for trimethoprim-sulfamethoxazole and doxycycline, in addition to clarithromycin, within the RGM/NAA panel, and to streptomycin, spectinomycin, and tetracycline resistance. pRErm46 variants with spontaneous deletions in the class 1 integron (C1I) region, observed in ≈30% of erm(46)-positive isolates, indicated that the newly identified resistances were attributable to the C1I's sulfonamide (sul1) and aminoglycoside (aaA9) resistance cassettes and adjacent tetRA(33) determinant. Most MDR isolates carried the rpoBS531F mutation of the 2287 clone, while different rpoB mutations (S531L, S531Y) detected in two cases suggest the emergence of novel MDR R. equi strains.


Assuntos
Rhodococcus equi , Rhodococcus , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana , Cavalos , Humanos , Macrolídeos/farmacologia , Testes de Sensibilidade Microbiana , Rhodococcus equi/genética
6.
Front Vet Sci ; 8: 628239, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33718470

RESUMO

Rhodococcus equi is an animal pathogen and zoonotic human opportunistic pathogen associated with immunosuppressive conditions. The pathogenicity of R. equi is linked to three animal host-associated virulence plasmids encoding a family of "Virulence Associated Proteins" (VAPs). Here, the PCR-based TRAVAP molecular typing system for the R. equi virulence plasmids was applied to 26 R. equi strains isolated between 2010 and 2016 at the Institute of Tropical Medicine "Pedro Kourí," Cuba, from individuals living with HIV/AIDS. TRAVAP detects 4 gene markers, traA common to the three virulence plasmids, and vapA, vapB, and vapN specific to each of the host-associated plasmid types (equine pVAPA, porcine pVAPB, and ruminant pVAPN). Of the 26 isolates, six were positive to the vapB (porcine-type) marker, 4 (15.4%) to the vapA (equine-type) marker, and 1 (3.8%) to the vapN (ruminant-type) marker. Most of the isolates 14 (53.8%) were negative to all TRAVAP markers, suggesting they lacked a virulence plasmid. To our knowledge, this work is the first to report the molecular characterization of R. equi isolates from Cuba. Our findings provide insight into the zoonotic origin of R. equi infections in people and the potential dispensability of the virulence plasmid in immunosuppressed patients.

7.
Emerg Infect Dis ; 27(2): 529-537, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33496218

RESUMO

Multidrug resistance has been detected in the animal and zoonotic human pathogen Rhodococcus equi after mass macrolide/rifampin antibioprophylaxis in endemically affected equine farms in the United States. Multidrug-resistant (MDR) R. equi emerged upon acquisition of pRERm46, a conjugative plasmid conferring resistance to macrolides, lincosamides, streptogramins, and, as we describe, tetracycline. Phylogenomic analyses indicate that the increasing prevalence of MDR R. equi since it was first documented in 2002 is caused by a clone, R. equi 2287, attributable to coselection of pRErm46 with a chromosomal rpoBS531F mutation driven by macrolide/rifampin therapy. pRErm46 spillover to other R. equi genotypes has given rise to a novel MDR clone, G2016, associated with a distinct rpoBS531Y mutation. Our findings illustrate that overuse of antimicrobial prophylaxis in animals can generate MDR pathogens with zoonotic potential. MDR R. equi and pRErm46-mediated resistance are currently disseminating in the United States and are likely to spread internationally through horse movements.


Assuntos
Infecções por Actinomycetales , Doenças dos Cavalos , Rhodococcus equi , Rhodococcus , Infecções por Actinomycetales/tratamento farmacológico , Infecções por Actinomycetales/epidemiologia , Infecções por Actinomycetales/veterinária , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana , Doenças dos Cavalos/epidemiologia , Cavalos , Macrolídeos/farmacologia , Rhodococcus equi/genética , Estados Unidos/epidemiologia
8.
mBio ; 11(6)2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33323519

RESUMO

Although all isolates of the foodborne pathogen Listeria monocytogenes are considered to be pathogenic, epidemiological evidence indicates that certain serovar 4b lineages are more likely to cause severe invasive (neuromeningeal, maternal-fetal) listeriosis. Recently described as L. monocytogenes "hypervirulent" clones, no distinctive bacterial trait has been identified so far that could account for the differential pathogenicity of these strains. Here, we discuss some preliminary observations in experimentally infected mice suggesting that serovar 4b hypervirulent strains may have a hitherto unrecognized capacity for prolonged in vivo survival. We propose the hypothesis that protracted survivability in primary infection foci in liver and spleen-the first target organs after intestinal translocation-may cause L. monocytogenes serovar 4b hypervirulent clones to have a higher probability of secondary dissemination to brain and placenta.


Assuntos
Encéfalo/microbiologia , Listeria monocytogenes/genética , Listeria monocytogenes/patogenicidade , Listeriose/microbiologia , Placenta/microbiologia , Animais , Translocação Bacteriana , Feminino , Genótipo , Humanos , Listeria monocytogenes/classificação , Listeria monocytogenes/fisiologia , Fígado/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Filogenia , Gravidez , Virulência
9.
Int J Syst Evol Microbiol ; 70(5): 3572-3576, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32375930

RESUMO

A recent taxonomic study confirmed the synonymy of Rhodococcus equi (Magnusson 1923) Goodfellow and Alderson 1977 and Corynebacterium hoagii (Morse 1912) Eberson 1918. As a result, both R. equi and C. hoagii were reclassified as Rhodococcus hoagii comb. nov. in application of the principle of priority of the Prokaryotic Code. Because R. equi is a well-known animal and zoonotic human pathogen, and a bacterial name solidly established in the veterinary and medical literature, we and others argued that the nomenclatural change may cause error and confusion and be potentially perilous. We have now additionally found that the nomenclatural type of the basonym C. hoagii, ATCC 7005T, does not correspond with the original description of the species C. hoagii in the early literature. Its inclusion as the C. hoagii type on the Approved Lists 1980 results in a change in the characters of the taxon and in C. hoagii designating two different bacteria. Moreover, ATCC 7005, the only strain in circulation under the name C. hoagii, does not have a well documented history; it is unclear why it was deposited as C. hoagii and a possible mix-up with a Corynebacterium (Rhodococcus) equi isolate is a reasonable assumption. We therefore request the rejection of Rhodococcus hoagii as a nomen ambiguum, nomen dubium and nomen perplexum in addition to nomen periculosum, and conservation of the name Rhodococcus equi, according to Rules 56ab of the Code.


Assuntos
Corynebacterium/classificação , Filogenia , Rhodococcus equi/classificação
10.
Appl Environ Microbiol ; 86(9)2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32169935

RESUMO

Conjugation is one of the main mechanisms involved in the spread and maintenance of antibiotic resistance in bacterial populations. We recently showed that the emerging macrolide resistance in the soilborne equine and zoonotic pathogen Rhodococcus equi is conferred by the erm(46) gene carried on the 87-kb conjugative plasmid pRErm46. Here, we investigated the conjugal transferability of pRErm46 to 14 representative bacteria likely encountered by R. equi in the environmental habitat. In vitro mating experiments demonstrated conjugation to different members of the genus Rhodococcus as well as to Nocardia and Arthrobacter spp. at frequencies ranging from ∼10-2 to 10-6 pRErm46 transfer was also observed in mating experiments in soil and horse manure, albeit at a low frequency and after prolonged incubation at 22 to 30°C (environmental temperatures), not 37°C. All transconjugants were able to transfer pRErm46 back to R. equi Conjugation could not be detected with Mycobacterium or Corynebacterium spp. or several members of the more distant phylum Firmicutes such as Enterococcus, Streptococcus, or Staphylococcus Thus, the pRErm46 host range appears to span several actinobacterial orders with certain host restriction within the Corynebacteriales All bacterial species that acquired pRErm46 expressed increased macrolide resistance with no significant deleterious impact on fitness, except in the case of Rhodococcus rhodnii Our results indicate that actinobacterial members of the environmental microbiota can both acquire and transmit the R. equi pRErm46 plasmid and thus potentially contribute to the maintenance and spread of erm(46)-mediated macrolide resistance in equine farms.IMPORTANCE This study demonstrates the efficient horizontal transfer of the Rhodococcus equi conjugative plasmid pRErm46, recently identified as the cause of the emerging macrolide resistance among equine isolates of this pathogen, to and from different environmental Actinobacteria, including a variety of rhodococci as well as Nocardia and Arthrobacter spp. The reported data support the notion that environmental microbiotas may act as reservoirs for the endemic maintenance of antimicrobial resistance in an antibiotic pressurized farm habitat.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Transferência Genética Horizontal , Genes Bacterianos , Macrolídeos/farmacologia , Rhodococcus equi/genética , Actinobacteria/genética , Plasmídeos/genética
11.
mBio ; 10(5)2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31615959

RESUMO

Antibiotic use has been linked to changes in the population structure of human pathogens and the clonal expansion of multidrug-resistant (MDR) strains among healthcare- and community-acquired infections. Here we present a compelling example in a veterinary pathogen, Rhodococcus equi, the causative agent of a severe pulmonary infection affecting foals worldwide. We show that the erm(46) gene responsible for emerging macrolide resistance among equine R. equi isolates in the United States is part of a 6.9-kb transposable element, TnRErm46, actively mobilized by an IS481 family transposase. TnRErm46 is carried on an 87-kb conjugative plasmid, pRErm46, transferable between R. equi strains at frequencies up to 10-3 The erm(46) gene becomes stabilized in R. equi by pRErm46's apparent fitness neutrality and wholesale TnRErm46 transposition onto the host genome. This includes the conjugally exchangeable pVAPA virulence plasmid, enabling the possibility of cotransfer of two essential traits for survival in macrolide-treated foals in a single mating event. Despite its high horizontal transfer potential, phylogenomic analyses show that erm(46) is paradoxically confined to a specific R. equi clone, 2287. R. equi 2287 also carries a unique rpoBS531F mutation conferring high-level resistance to rifampin, systematically administered together with macrolides against rhodococcal pneumonia on equine farms. Our data illustrate that under sustained combination therapy, several independent "founder" genetic events are concurrently required for resistance, limiting not only its emergence but also, crucially, horizontal spread, ultimately determining multiresistance clonality.IMPORTANCE MDR clades arise upon acquisition of resistance traits, but the determinants of their clonal expansion remain largely undefined. Taking advantage of the unique features of Rhodococcus equi infection control in equine farms, involving the same dual antibiotic treatment since the 1980s (a macrolide and rifampin), this study sheds light into the determinants of multiresistance clonality and the importance of combination therapy in limiting the dissemination of mobile resistance elements. Clinically effective therapeutic alternatives against R. equi foal pneumonia are currently lacking, and the identified macrolide-rifampin MDR clone 2287 has serious implications. Still at early stages of evolution and local spread, R. equi 2287 may disseminate globally, posing a significant threat to the equine industry and, also, public health due to the risk of zoonotic transmission. The characterization of the 2287 clone and its resistance determinants will enable targeted surveillance and control interventions to tackle the emergence of MDR R. equi.


Assuntos
Antibacterianos/farmacologia , Rhodococcus equi/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana/genética , Macrolídeos/farmacologia , Testes de Sensibilidade Microbiana , Rhodococcus equi/efeitos dos fármacos , Virulência/genética
12.
Mol Microbiol ; 112(1): 1-15, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31099908

RESUMO

Rhodococcus equi is the only recognized animal pathogenic species within an extended genus of metabolically versatile Actinobacteria of considerable biotechnological interest. Best known as a horse pathogen, R. equi is commonly isolated from other animal species, particularly pigs and ruminants, and causes severe opportunistic infections in people. As typical in the rhodococci, R. equi niche specialization is extrachromosomally determined, via a conjugative virulence plasmid that promotes intramacrophage survival. Progress in the molecular understanding of R. equi and its recent rise as a novel paradigm of multihost adaptation has been accompanied by an unusual nomenclatural instability, with a confusing succession of names: "Prescottia equi", "Prescotella equi", Corynebacterium hoagii and Rhodococcus hoagii. This article reviews current advances in the genomics, biology and virulence of this pathogenic actinobacterium with a unique mechanism of plasmid-transferable animal host tropism. It also discusses the taxonomic and nomenclatural issues around R. equi in the light of recent phylogenomic evidence that confirms its membership as a bona fide Rhodococcus.


Assuntos
Rhodococcus equi/genética , Rhodococcus equi/metabolismo , Rhodococcus equi/patogenicidade , Infecções por Actinomycetales , Animais , Genômica , Cavalos , Filogenia , Plasmídeos , Rhodococcus , Suínos , Virulência
13.
Infect Immun ; 85(11)2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28827366

RESUMO

The pathogenesis of Listeria monocytogenes depends on the ability of this bacterium to escape from the phagosome of the host cells via the action of the pore-forming toxin listeriolysin O (LLO). Expression of the LLO-encoding gene (hly) requires the transcriptional activator PrfA, and both hly and prfA genes are essential for L. monocytogenes virulence. Here, we used the hemolytic activity of LLO as a phenotypic marker to screen for spontaneous virulence-attenuating mutations in L. monocytogenes Sixty nonhemolytic isolates were identified among a collection of 57,820 confirmed L. monocytogenes strains isolated from a variety of sources (0.1%). In most cases (56/60; 93.3%), the nonhemolytic phenotype resulted from nonsense, missense, or frameshift mutations in prfA Five strains carried hly mutations leading to a single amino acid substitution (G299V) or a premature stop codon causing strong virulence attenuation in mice. In one strain, both hly and gshF (encoding a glutathione synthase required for full PrfA activity) were missing due to genomic rearrangements likely caused by a transposable element. The PrfA/LLO loss-of-function (PrfA-/LLO-) mutants belonged to phylogenetically diverse clades of L. monocytogenes, and most were identified among nonclinical strains (57/60). Consistent with the rare occurrence of loss-of-virulence mutations, we show that prfA and hly are under purifying selection. Although occurring at a low frequency, PrfA-/LLO- mutational events in L. monocytogenes lead to niche restriction and open an evolutionary path for obligate saprophytism in this facultative intracellular pathogen.


Assuntos
Proteínas de Bactérias/genética , Toxinas Bacterianas/genética , Regulação Bacteriana da Expressão Gênica , Proteínas de Choque Térmico/genética , Proteínas Hemolisinas/genética , Listeria monocytogenes/genética , Listeria monocytogenes/patogenicidade , Mutação , Fatores de Terminação de Peptídeos/genética , Substituição de Aminoácidos , Animais , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Evolução Biológica , Clonagem Molecular , Eritrócitos/microbiologia , Proteínas de Choque Térmico/metabolismo , Proteínas Hemolisinas/metabolismo , Hemólise , Humanos , Listeria monocytogenes/classificação , Listeria monocytogenes/crescimento & desenvolvimento , Listeriose/microbiologia , Listeriose/patologia , Camundongos , Camundongos Endogâmicos BALB C , Fatores de Terminação de Peptídeos/metabolismo , Filogenia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Seleção Genética , Índice de Gravidade de Doença , Virulência
14.
mBio ; 8(3)2017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28655824

RESUMO

The Gram-positive facultative intracellular bacterium Listeria monocytogenes is the causative agent of listeriosis, a severe food-borne infection. Pregnant women are at risk of contracting listeriosis, which can potentially lead to miscarriage, stillbirth, preterm birth, and congenital neonatal infections. While other systemic bacterial infections may result in adverse pregnancy outcomes at comparable frequencies, L. monocytogenes has particular notoriety because fetal complications largely occur in the absence of overt illness in the mother, delaying medical intervention. Here, we briefly review the pathophysiology and mechanisms of maternofetal listeriosis, discussed in light of a recent mBio report on Listeria transplacental infection in a nonhuman primate model.


Assuntos
Transmissão Vertical de Doenças Infecciosas , Listeria monocytogenes/patogenicidade , Listeriose/fisiopatologia , Placenta/patologia , Feminino , Humanos , Gravidez
15.
Genome Biol Evol ; 9(5): 1241-1247, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28369330

RESUMO

The conjugative virulence plasmid is a key component of the Rhodococcus equi accessory genome essential for pathogenesis. Three host-associated virulence plasmid types have been identified the equine pVAPA and porcine pVAPB circular variants, and the linear pVAPN found in bovine (ruminant) isolates. We recently characterized the R. equi pangenome (Anastasi E, et al. 2016. Pangenome and phylogenomic analysis of the pathogenic actinobacterium Rhodococcus equi. Genome Biol Evol. 8:3140-3148.) and we report here the comparative analysis of the virulence plasmid genomes. Plasmids within each host-associated type were highly similar despite their diverse origins. Variation was accounted for by scattered single nucleotide polymorphisms and short nucleotide indels, while larger indels-mostly in the plasticity region near the vap pathogencity island (PAI)-defined plasmid genomic subtypes. Only one of the plasmids analyzed, of pVAPN type, was exceptionally divergent due to accumulation of indels in the housekeeping backbone. Each host-associated plasmid type carried a unique PAI differing in vap gene complement, suggesting animal host-specific evolution of the vap multigene family. Complete conservation of the vap PAI was observed within each host-associated plasmid type. Both diversity of host-associated plasmid types and clonality of specific chromosomal-plasmid genomic type combinations were observed within the same R. equi phylogenomic subclade. Our data indicate that the overall strong conservation of the R. equi host-associated virulence plasmids is the combined result of host-driven selection, lateral transfer between strains, and geographical spread due to international livestock exchanges.


Assuntos
Evolução Molecular , Ilhas Genômicas , Rhodococcus equi/genética , Infecções por Actinomycetales/microbiologia , Infecções por Actinomycetales/veterinária , Animais , Bovinos , Interações Hospedeiro-Patógeno , Filogenia , Plasmídeos , Rhodococcus equi/isolamento & purificação , Rhodococcus equi/patogenicidade
16.
Genome Biol Evol ; 8(10): 3140-3148, 2016 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-27638249

RESUMO

We report a comparative study of 29 representative genomes of the animal pathogen Rhodococcus equi The analyses showed that R. equi is genetically homogeneous and clonal, with a large core genome accounting for ≈80% of an isolates' gene content. An open pangenome, even distribution of accessory genes among the isolates, and absence of significant core-genome recombination, indicated that gene gain/loss is a main driver of R. equi genome evolution. Traits previously predicted to be important in R. equi physiology, virulence and niche adaptation were part of the core genome. This included the lack of a phosphoenolpyruvate:carbohydrate transport system (PTS), unique among the rhodococci except for the closely related Rhodococcus defluvii, reflecting selective PTS gene loss in the R. equi-R. defluvii sublineage. Thought to be asaccharolytic, rbsCB and glcP non-PTS sugar permease homologues were identified in the core genome and, albeit inefficiently, R. equi utilized their putative substrates, ribose and (irregularly) glucose. There was no correlation between R. equi whole-genome phylogeny and host or geographical source, with evidence of global spread of genomovars. The distribution of host-associated virulence plasmid types was consistent with the exchange of the plasmids (and corresponding host shifts) across the R. equi population, and human infection being zoonotically acquired. Phylogenomic analyses demonstrated that R. equi occupies a central position in the Rhodococcus phylogeny, not supporting the recently proposed transfer of the species to a new genus.


Assuntos
Evolução Molecular , Genoma Bacteriano , Filogenia , Rhodococcus equi/genética , Proteínas de Bactérias/genética , Metabolismo dos Carboidratos/genética , Proteínas de Membrana Transportadoras/genética , Polimorfismo Genético , Rhodococcus equi/classificação
17.
J Antimicrob Chemother ; 70(12): 3184-90, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26377866

RESUMO

OBJECTIVES: The objective of this study was to identify the molecular mechanism of macrolide resistance in the actinomycete Rhodococcus equi, a major equine pathogen and zoonotic agent causing opportunistic infections in people. METHODS: Macrolide-resistant (n = 62) and macrolide-susceptible (n = 62) clinical isolates of R. equi from foals in the USA were studied. WGS of 18 macrolide-resistant and 6 macrolide-susceptible R. equi was performed. Representative sequences of all known macrolide resistance genes identified to date were used to search the genome assemblies for putative homologues. PCR was used to screen for the presence of the identified resistance determinant in the rest of the isolates. Mating experiments were performed to verify mobility of the gene. RESULTS: A novel erm gene, erm(46), was identified in all sequenced resistant isolates, but not in susceptible isolates. There was complete association between macrolide resistance and the presence of erm(46) as detected by PCR screening of all 124 clinical isolates of R. equi. Expression of erm(46) in a macrolide-susceptible strain of R. equi induced high-level resistance to macrolides, lincosamides and streptogramins B, but not to other classes of antimicrobial agents. Transfer of erm(46) to macrolide-susceptible R. equi was confirmed. The transfer frequency ranged from 3 × 10(-3) to 1 × 10(-2). CONCLUSIONS: This is the first molecular characterization of resistance to macrolides, lincosamides and streptogramins B in R. equi. Resistance was due to the presence of a novel erm(46) gene mobilizable likely by conjugation, which has spread among equine isolates of R. equi in the USA.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Transferência Genética Horizontal , Genes Bacterianos , Macrolídeos/farmacologia , Rhodococcus equi/efeitos dos fármacos , Rhodococcus equi/genética , Infecções por Actinomycetales/microbiologia , Infecções por Actinomycetales/veterinária , Animais , Animais Recém-Nascidos , Conjugação Genética , DNA Bacteriano/química , DNA Bacteriano/genética , Doenças dos Cavalos/microbiologia , Cavalos , Lincosamidas/farmacologia , Rhodococcus equi/isolamento & purificação , Análise de Sequência de DNA , Estreptogramina B/farmacologia , Estados Unidos
18.
Environ Microbiol ; 17(11): 4566-79, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26178789

RESUMO

Virulence traits are essential for pathogen fitness, but whether they affect microbial performance in the environment, where they are not needed, remains experimentally unconfirmed. We investigated this question with the facultative pathogen Listeria monocytogenes and its PrfA virulence regulon. PrfA-regulated genes are activated intracellularly (PrfA 'ON') but shut down outside the host (PrfA 'OFF'). Using a mutant PrfA regulator locked ON (PrfA*) and thus causing PrfA-controlled genes to be constitutively activated, we show that virulence gene expression significantly impairs the listerial growth rate (µ) and maximum growth (A) in rich medium. Deletion analysis of the PrfA regulon and complementation of a L. monocytogenes mutant lacking all PrfA-regulated genes with PrfA* indicated that the growth reduction was specifically due to the unneeded virulence determinants and not to pleiotropic regulatory effects of PrfA ON. No PrfA*-associated fitness disadvantage was observed in infected eukaryotic cells, where PrfA-regulated virulence gene expression is critical for survival. Microcosm experiments demonstrated that the constitutively virulent state strongly impaired L. monocytogenes performance in soil, the natural habitat of these bacteria. Our findings provide empirical proof that virulence carries a significant cost to the pathogen. They also experimentally substantiate the assumed, although not proven, key role of virulence gene regulation systems in suppressing the cost of bacterial virulence outside the host.


Assuntos
Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica/genética , Interações Hospedeiro-Patógeno , Listeria monocytogenes/patogenicidade , Fatores de Terminação de Peptídeos/genética , Fatores de Virulência/genética , Células HeLa , Humanos , Listeria monocytogenes/genética , Listeria monocytogenes/crescimento & desenvolvimento , Regulon , Microbiologia do Solo , Transativadores/genética
19.
Infect Immun ; 83(7): 2725-37, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25895973

RESUMO

We report a novel host-associated virulence plasmid in Rhodococcus equi, pVAPN, carried by bovine isolates of this facultative intracellular pathogenic actinomycete. Surprisingly, pVAPN is a 120-kb invertron-like linear replicon unrelated to the circular virulence plasmids associated with equine (pVAPA) and porcine (pVAPB variant) R. equi isolates. pVAPN is similar to the linear plasmid pNSL1 from Rhodococcus sp. NS1 and harbors six new vap multigene family members (vapN to vapS) in a vap pathogenicity locus presumably acquired via en bloc mobilization from a direct predecessor of equine pVAPA. Loss of pVAPN rendered R. equi avirulent in macrophages and mice. Mating experiments using an in vivo transconjugant selection strategy demonstrated that pVAPN transfer is sufficient to confer virulence to a plasmid-cured R. equi recipient. Phylogenetic analyses assigned the vap multigene family complement from pVAPN, pVAPA, and pVAPB to seven monophyletic clades, each containing plasmid type-specific allelic variants of a precursor vap gene carried by the nearest vap island ancestor. Deletion of vapN, the predicted "bovine-type" allelic counterpart of vapA, essential for virulence in pVAPA, abrogated pVAPN-mediated intramacrophage proliferation and virulence in mice. Our findings support a model in which R. equi virulence is conferred by host-adapted plasmids. Their central role is mediating intracellular proliferation in macrophages, promoted by a key vap determinant present in the common ancestor of the plasmid-specific vap islands, with host tropism as a secondary trait selected during coevolution with specific animal species.


Assuntos
Macrófagos/microbiologia , Viabilidade Microbiana , Plasmídeos , Rhodococcus equi/fisiologia , Animais , Bovinos , Análise por Conglomerados , Conjugação Genética , DNA Bacteriano/química , DNA Bacteriano/genética , Transferência Genética Horizontal , Genes Bacterianos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Filogenia , Rhodococcus equi/genética , Rhodococcus equi/crescimento & desenvolvimento , Rhodococcus equi/isolamento & purificação , Análise de Sequência de DNA , Homologia de Sequência , Virulência , Fatores de Virulência/genética
20.
Vet Microbiol ; 172(1-2): 256-64, 2014 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-24852140

RESUMO

The pathogenic actinomycete Rhodococcus equi causes severe purulent lung infections in foals and immunocompromised people. Although relatively unsusceptible to R. equi, mice are widely used for in vivo studies with this pathogen. The most commonly employed mouse model is based on systemic (intravenous) infection and determination of R. equi burdens in spleen and liver. Here, we investigated the murine lung for experimental infection studies with R. equi. Using a 10(7)CFU intranasal challenge in BALB/c mice, virulent R. equi consistently survived in quantifiable numbers up to 10 days in the lungs whereas virulence-deficient R. equi bacteria were rapidly cleared. An internally controlled virulence assay was developed in which the test R. equi strains are co-inoculated and monitored in the same mouse. Isogenic R. equi bacteria lacking either the plasmid vapA gene or the entire virulence plasmid were compared using this competitive assay. Both strains showed no significant differences in in vivo fitness in the lung, indicating that the single loss of the virulence factor VapA was sufficient to account for the full attenuation seen in the absence of the virulence plasmid. To test the adequacy of the lung infection model for monitoring R. equi vaccine efficacy, BALB/c mice were immunized with live R. equi and challenged intranasally. Vaccination conferred protection against acute pulmonary challenge with virulent R. equi. Our data indicate that the murine lung infection model provides a useful tool for both R. equi virulence and vaccine studies.


Assuntos
Infecções por Actinomycetales/prevenção & controle , Proteínas de Bactérias/imunologia , Vacinas Bacterianas/imunologia , Rhodococcus equi/imunologia , Rhodococcus equi/patogenicidade , Fatores de Virulência/imunologia , Infecções por Actinomycetales/imunologia , Infecções por Actinomycetales/microbiologia , Infecções por Actinomycetales/patologia , Animais , Proteínas de Bactérias/genética , Vacinas Bacterianas/administração & dosagem , Vacinas Bacterianas/genética , Modelos Animais de Doenças , Feminino , Pulmão/imunologia , Pulmão/patologia , Camundongos , Camundongos Endogâmicos BALB C , Rhodococcus equi/genética , Vacinação , Virulência , Fatores de Virulência/deficiência , Fatores de Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA